News

Genetic switch between unicellularity and multicellularity in marine yeasts

  • Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratcliff, W. C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4, 2742 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Cornwallis, C. K. et al. Single-cell adaptations shape evolutionary transitions to multicellularity in green algae. Nat. Ecol. Evol. 7, 889–902 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zalar, P. et al. The extremely halotolerant black yeast Hortaea werneckii—a model for intraspecific hybridization in clonal fungi. IMA Fungus 10, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Busch, R. J. & Vargas-Muniz, J. M. Hortaea werneckii. Trends Microbiol. 33, 1033–1034 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, H. S. & Yu, J. H. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15, 669–677 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J.-S. et al. Neodothiora pruni sp. nov., a biosurfactant-producing ascomycetous yeast species isolated from flower of Prunus mume. Mycobiology 51, 388–392 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levis, N. A. & Pfennig, D. W. Phenotypic plasticity, canalization, and the origins of novelty: evidence and mechanisms from amphibians. Semin. Cell Dev. Biol. 88, 80–90 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Moczek, A. P. et al. The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B 278, 2705–2713 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).

  • Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).

    Article 

    Google Scholar 

  • Kroos, L. et al. Milestones in the development of Myxococcus xanthus as a model multicellular bacterium. J. Bacteriol. 207, e0007125 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Kawabe, Y., Du, Q., Schilde, C. & Schaap, P. Evolution of multicellularity in Dictyostelia. Int. J. Dev. Biol. 63, 359–369 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Márquez-Zacarías, P., Conlin, P. L., Tong, K., Pentz, J. T. & Ratcliff, W. C. Why have aggregative multicellular organisms stayed simple? Curr. Genet. 67, 871–876 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Booth, D. S. & King, N. The history of Salpingoeca rosetta as a model for reconstructing animal origins. Curr. Top. Dev. Biol. 147, 73–91 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rados, T. et al. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 388, 109–115 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchison-Field, L. M. Y. et al. Unconventional cell division cycles from marine-derived yeasts. Curr. Biol. 29, 3439–3456 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goshima, G. Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts. Genes Cells 27, 124–137 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shabardina, V. et al. Ichthyosporea: a window into the origin of animals. Commun. Biol. 7, 915 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoch, C. L. et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 64, 1–15 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurita, G., Goshima, G. & Uesaka, K. Draft genome sequences of two Dothideomycetes strains, NU30 and NU200, derived from the marine environment around Sugashima, Japan. Microbiol. Resour. Announc. 12, e0121722 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Martín, V. et al. Cip1 and Cip2 are novel RNA-recognition-motif proteins that counteract Csx1 function during oxidative stress. Mol. Biol. Cell 17, 1176–1183 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. The Myb family genes in the rice pathogen Magnaporthe oryzae: finding and deleting more family members involved in pathogenicity. Preprint at bioRxiv https://doi.org/10.1101/2021.12.28.474317 (2023).

  • Lee, S., Völz, R., Song, H., Harris, W. & Lee, Y. H. Characterization of the MYB genes reveals insights into their evolutionary conservation, structural diversity, and functional roles in Magnaporthe oryzae. Front. Microbiol. 12, 721530 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bidlingmaier, S., Weiss, E. L., Seidel, C., Drubin, D. G. & Snyder, M. The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 2449–2462 (2001).

    See also  EC sets 7-day deadline for voter list mapping

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verde, F., Wiley, D. J. & Nurse, P. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proc. Natl Acad. Sci. USA 95, 7526–7531 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B. & Varma, A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276, 19679–19682 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bensch, K., Braun, U., Groenewald, J. Z. & Crous, P. W. The genus Cladosporium. Stud. Mycol. 72, 1–401 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mata, J. & Nurse, P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939–949 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takeshita, N. et al. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J. Cell Sci. 126, 5400–5411 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ojeda-López, M. et al. Evolution of asexual and sexual reproduction in the aspergilli. Stud. Mycol. 91, 37–59 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • König, S. G. & Nedelcu, A. M. The genetic basis for the evolution of soma: mechanistic evidence for the co-option of a stress-induced gene into a developmental master regulator. Proc. Biol. Sci. 287, 20201414 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abu Hatoum, O. et al. Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol. Cell. Biol. 18, 5670–5677 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfirrmann, T. et al. Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc. Natl Acad. Sci. USA 113, 10103–10108 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koschwanez, J. H., Foster, K. R. & Murray, A. W. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2, e00367 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D. & Travisano, M. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pineau, R. M. et al. Experimental evolution of multicellularity via cuboidal cell packing in fission yeast. Evol. Lett. 8, 695–704 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bozdag, G. O. et al. De novo evolution of macroscopic multicellularity. Nature 617, 747–754 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, K., Bozdag, G. O. & Ratcliff, W. C. Selective drivers of simple multicellularity. Curr. Opin. Microbiol. 67, 102141 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Paul, V. J., Freeman, C. J. & Agarwal, V. Chemical ecology of marine sponges: new opportunities through “-omics”. Integr. Comp. Biol. 59, 765–776 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7, 185–195 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barrere, J., Nanda, P. & Murray, A. W. Alternating selection for dispersal and multicellularity favors regulated life cycles. Curr. Biol. 34, 1160 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    See also  UAMS highlights digital health care's role in improving postpartum support in Arkansas

    Google Scholar 

  • Projecto-Garcia, J., Biddle, J. F. & Ragsdale, E. J. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr. Opin. Genet. Dev. 47, 1–8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kijimoto, T. & Moczek, A. P. Hedgehog signaling enables nutrition-responsive inhibition of an alternative morph in a polyphenic beetle. Proc. Natl Acad. Sci. USA 113, 5982–5987 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bento, G., Ogawa, A. & Sommer, R. J. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466, 494–497 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ragsdale, E. J., Müller, M. R., Rödelsperger, C. & Sommer, R. J. A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155, 922–933 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foret, S. et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl Acad. Sci. USA 109, 4968–4973 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duncan, E. J., Gluckman, P. D. & Dearden, P. K. Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J. Exp. Zool. B 322, 208–220 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ozawa, T. et al. Histone deacetylases control module-specific phenotypic plasticity in beetle weapons. Proc. Natl Acad. Sci. USA 113, 15042–15047 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dardiry, M. et al. Divergent combinations of cis-regulatory elements control the evolution of phenotypic plasticity. PLoS Biol. 21, e3002270 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, A. W. Can gene-inactivating mutations lead to evolutionary novelty? Curr. Biol. 30, R465–R471 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. & Goshima, G. Mitotic spindle formation in the absence of Polo kinase. Proc. Natl Acad. Sci. USA 119, e2114429119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Gene 709, 8–16 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ballance, D. J. & Turner, G. Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36, 321–331 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernandez-Rodriguez, Y., Bullard, A. M., Busch, R. J., Marshall, A. & Vargas-Muñiz, J. M. Strategies for genetic manipulation of the halotolerant black yeast Hortaea werneckii: ectopic DNA integration and marker-free CRISPR/Cas9 transformation. Microbiol. Spectr. 13, e0243024 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Rothstein, R. J. One-step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakamura, H. et al. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation. J. Gen. Appl. Microbiol. 63, 172–178 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Okuno, Y., Okazaki, T. & Masukata, H. Identification of a predominant replication origin in fission yeast. Nucleic Acids Res. 25, 530–537 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takeda, K., Mori, A. & Yanagida, M. Identification of genes affecting the toxicity of anti-cancer drug bortezomib by genome-wide screening in S. pombe. PLoS ONE 6, e22021 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrucco, C. A. et al. Mechanisms of nuclear segregation in a multinucleate multibudding yeast. J. Cell Biol. https://doi.org/10.1083/jcb.202504068 (2025).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gostincar, C., Stajich, J. E., Zupancic, J., Zalar, P. & Gunde-Cimerman, N. Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast. BMC Genom. 19, 364 (2018).

    Article 

    Google Scholar 

  • Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

    See also  Lung patients forced to switch medications too often: Lung Fund

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 3, lqaa108 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-ETP significantly improves the accuracy of automatic annotation of large eukaryotic genomes. Genome Res. 34, 757–768 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).

  • Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steenwyk, J. L., Buida, T. J. 3rd, Li, Y., Shen, X. X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beimforde, C. et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol. Phylogenet. Evol. 78, 386–398 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    Article 
    CAS 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. Bioconductor https://doi.org/10.18129/B9.bioc.topGO (2022).

  • LaBar, T., Phoebe Hsieh, Y. Y., Fumasoni, M. & Murray, A. W. Evolutionary repair experiments as a window to the molecular diversity of life. Curr. Biol. 30, R565–R574 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van den Bergh, B., Swings, T., Fauvart, M. & Michiels, J. Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/mmbr.00008-18 (2018).

  • Amses, K. R. et al. Diploid-dominant life cycles characterize the early evolution of Fungi. Proc. Natl Acad. Sci. USA 119, e2116841119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. shinyCircos-V2.0: leveraging the creation of Circos plot with enhanced usability and advanced features. Imeta 2, e109 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source link

    Digit

    Digit is a versatile content creator with expertise in Health, Technology, Movies, and News. With over 7 years of experience, he delivers well-researched, engaging, and insightful articles that inform and entertain readers. Passionate about keeping his audience updated with accurate and relevant information, Digit combines factual reporting with actionable insights. Follow his latest updates and analyses on DigitPatrox.
    Back to top button
    close